首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   7篇
  国内免费   7篇
安全科学   6篇
废物处理   11篇
环保管理   40篇
综合类   29篇
基础理论   26篇
环境理论   1篇
污染及防治   49篇
评价与监测   13篇
社会与环境   4篇
灾害及防治   1篇
  2022年   4篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   11篇
  2015年   3篇
  2014年   3篇
  2013年   19篇
  2012年   6篇
  2011年   9篇
  2010年   11篇
  2009年   7篇
  2008年   8篇
  2007年   7篇
  2006年   7篇
  2005年   16篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1966年   4篇
  1965年   1篇
  1960年   1篇
  1957年   1篇
  1935年   1篇
  1931年   1篇
排序方式: 共有180条查询结果,搜索用时 16 毫秒
11.
Land application of manure is a common practice in the Upper Midwest of the United States. Recently, there have been concerns regarding the effect of this practice on water quality, especially when manure is applied during winter over frozen soils. A study undertaken on a Rozetta silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalfs) at Lancaster, WI, evaluated the effects of tillage and timing of manure application on surface and subsurface water quality. The daily scrape and haul liquid dairy manure was applied either in the fall (before snow) or in winter (over snow with frozen soil underneath) to be compared with no manure under two tillage systems (no-till and chisel-plowing). In this paper, we report results on the effects of the above treatments on mineral N leaching. Percolation and mineral N leaching during the nongrowing season were, respectively, 72 and 78% of the annual losses, mainly because of the absence of plant water and N uptake. Percolation was generally higher from no-till compared with chisel-plow but there was no significant effect of tillage on mineral N concentration of the leachate or mineral N losses via leaching. Mineral N leaching was statistically higher from the manure-applied vs. no-manure treatment, but there was no difference between winter-applied manure and no-manure treatments. There were significant tillage by manure interactions with fall manure application followed by chisel-plowing resulting in highest N leaching losses. Averaged over the two years, N leaching rates were 52, 38, and 28 kg N ha(-1) yr(-1) from fall-applied, winter-applied, and no-manure treatments, respectively. These results show that there is substantial N leaching from these soils even when no fertilizer or manure is applied. Furthermore, fall-applied manure followed by fall tillage significantly increases N leaching due to enhanced mineralization of both soil and manure organic N.  相似文献   
12.
Suspended solids or sediments can be pollutants in rivers, but they are also an important component of lotic food webs. Suspended sediment data for rivers were obtained from a United States–wide water quality database for 622 stations. Data for particulate nitrogen, suspended carbon, discharge, watershed area, land use, and population were also used. Stations were classified by United States Environmental Protection Agency ecoregions to assess relationships between terrestrial habitats and the quality and quantity of total suspended solids (TSS). Results indicate that nephelometric determinations of mean turbidity can be used to estimate mean suspended sediment values to within an order of magnitude (r2 = 0.89). Water quality is often considered impaired above 80 mg TSS L–1, and 35% of the stations examined during this study had mean values exceeding this level. Forested systems had substantially lower TSS and somewhat higher carbon-to-nitrogen ratios of suspended materials. The correlation between TSS and discharge was moderately well described by an exponential relationship, with the power of the exponent indicating potential acute sediment events in rivers. Mean sediment values and power of the exponent varied significantly with ecoregion, but TSS values were also influenced by land use practices and geomorphological characteristics. Results confirm that, based on current water quality standards, excessive suspended solids impair numerous rivers in the United States.  相似文献   
13.
Suspended fine particles (seston) are an important component of energy and nutrient cycling in streams, but they can also be pollutants. We examined seston dynamics and filter-feeding macroinvertebrate communities in sites representing headwaters to large rivers in the Kansas River drainage, northeastern KS. Seston samples were collected at least seasonally during low to moderate flows for one year beginning in the summer of 1999, and quality was assessed by determining organic content and C to N ratio. A rapid bioassessment approach was used to examine filter-feeders. Relationships between stream size and seston concentrations were markedly influenced by anthropogenic activities. There was no relationship between total seston concentration and stream size across all sites (r = 0.14, p > 0.05), but a significant, positive relationship was evident when impounded and suburban sites were excluded (r = 0.73, p < 0.01); this same trend was evident for organic and inorganic components. Seasonal patterns of C to N ratio were evident, with generally lower values during winter and highest values in summer. However, seasonal patterns were dampened in suburban sites and virtually absent below impoundments. Filter-feeder richness was correlated with average organic seston concentrations (r = 0.8, p < 0.01), but this relationship was also obscured by impoundments and suburban development. In particular, impoundments had a dramatic, negative effect on richness. Abundance of most hydropsychid caddisfly taxa was positively correlated with organic seston concentration. Results indicate there are significant patterns regarding seston, filter-feeders, and stream size in this Great Plains river system, but patterns are strongly influenced by human activities. These relationships are relevant to management issues regarding suspended particles and the potential development of bioassessment techniques.  相似文献   
14.
We used invertebrate bioassessment, habitat analysis, geographic information system analysis of land use, and water chemistry monitoring to evaluate tributaries of a degraded northeast Nebraska, USA, reservoir. Bimonthly invertebrate collections and monthly water chemistry samples were collected for two years on six stream reaches to identify sources contributing to reservoir degradation and test suitability of standard rapid bioassessment methods in this region. A composite biotic index composed of seven commonly used metrics was effective for distinguishing between differentially impacted sites and responded to a variety of disturbances. Individual metrics varied greatly in precision and ability to discriminate between relatively impacted and unimpacted stream reaches. A modified Hilsenhoff index showed the highest precision (reference site CV = 0.08) but was least effective at discriminating among sites. Percent dominance and the EPT (number of Ephemeroptera, Plecoptera, and Trichoptera taxa) metrics were most effective at discriminating between sites and exhibited intermediate precision. A trend of higher biotic integrity during summer was evident, indicating seasonal corrections should differ from other regions. Poor correlations were evident between water chemistry variables and bioassessment results. However, land-use factors, particularly within 18-m riparian zones, were correlated with bioassessment scores. For example, there was a strong negative correlation between percentage of rangeland in 18-m riparian zones and percentage of dominance in streams (r 2 = 0.90, P < 0.01). Results demonstrate that standard rapid bioassessment methods, with some modifications, are effective for use in this agricultural region of the Great Plains and that riparian land use may be the best predictor of stream biotic integrity.  相似文献   
15.
With rising concentrations of both atmospheric carbon dioxide (CO2) and tropospheric ozone (O3), it is important to better understand the interacting effects of these two trace gases on plant physiology affecting land-atmosphere gas exchange. We investigated the effect of growth under elevated CO2 and O3, singly and in combination, on the primary short-term stomatal response to CO2 concentration in paper birch at the Aspen FACE experiment. Leaves from trees grown in elevated CO2 and/or O3 exhibited weaker short-term responses of stomatal conductance to both an increase and a decrease in CO2 concentration from current ambient level. The impairement of the stomatal CO2 response by O3 most likely developed progressively over the growing season as assessed by sap flux measurements. Our results suggest that expectations of plant water-savings and reduced stomatal air pollution uptake under rising atmospheric CO2 may not hold for northern hardwood forests under concurrently rising tropospheric O3.  相似文献   
16.
Angradi, Ted R., David W. Bolgrien, Matt A. Starry, and Brian H. Hill, 2012. Modeled Summer Background Concentration of Nutrients and Suspended Sediment in the Mid‐Continent (USA) Great Rivers. Journal of the American Water Resources Association (JAWRA) 48(5): 1054‐1070. DOI: 10.1111/j.1752‐1688.2012.00669.x Abstract: We used regression models to predict summer background concentration of total nitrogen (N), total phosphorus (P), and total suspended solids (TSS), in the mid‐continent great rivers: the Upper Mississippi, the Lower Missouri, and the Ohio. From multiple linear regressions of water quality indicators with land use and other stressor variables, we determined the concentration of the indicators when the predictor variables were all set to zero — the y‐intercept. Except for total P on the Upper Mississippi River, we could predict background concentration using regression models. Predicted background concentration of total N was about the same on the Upper Mississippi and Lower Missouri Rivers (430 μg l?1), which was lower than percentile‐based values, but was similar to concentrations derived from the response of sestonic chlorophyll a to great river total N concentration. Background concentration of total P on the Lower Missouri (65 μg l?1) was also lower than published and percentile‐based concentrations. Background TSS concentration was higher on the Lower Missouri (40 mg l?1) than the other rivers. Background TSS concentration on the Upper Mississippi (16 mg l?1) was below a threshold (30 mg l?1) designed to protect aquatic vegetation. Our model‐predicted concentrations for the great rivers are an attempt to estimate background concentrations for water quality indicators independent from thresholds based on percentiles or derived from stressor‐response relationships.  相似文献   
17.
18.
Stream restoration practices are becoming increasingly common, but biological assessments of these improvements are still limited. Rock weirs, a type of constructed riffle, were implemented in the upper Cache River in southern Illinois, USA, in 2001 and 2003–2004 to control channel incision and protect high quality riparian wetlands as part of an extensive watershed-level restoration. Construction of the rock weirs provided an opportunity to examine biological responses to a common in-stream restoration technique. We compared macroinvertebrate assemblages on previously constructed rock weirs and newly constructed weirs to those on snags and scoured clay streambed, the two dominant substrates in the unrestored reaches of the river. We quantitatively sampled macroinvertebrates on these substrates on seven occasions during 2003 and 2004. Ephemeroptera, Plecoptera, and Trichoptera (EPT) biomass and aquatic insect biomass were significantly higher on rock weirs than the streambed for most sample periods. Snags supported intermediate EPT and aquatic insect biomass compared to rock weirs and the streambed. Nonmetric multidimensional scaling (NMDS) ordinations for 2003 and 2004 revealed distinct assemblage groups for rock weirs, snags, and the streambed. Analysis of similarity supported visual interpretation of NMDS plots. All pair-wise substrate comparisons differed significantly, except recently constructed weirs versus older weirs. Results indicate positive responses by macroinvertebrate assemblages to in-stream restoration in the Cache River. Moreover, these responses were not evident with more common measures of total density, biomass, and diversity.  相似文献   
19.
Emissions of malodors are considered to be the greatest threat to the compost industry. In work presented here, several simple odor mitigation alternatives were investigated for their effectiveness in preventing the release of common odorants, such as terpenes, ammonia, and reduced sulfur compounds. The mitigation methods studied included the use of a blanket of finished compost, compost amendment mixed within the feedstock, odor neutralizing agents (ONAs), and oxygen release compounds (ORCs). Among the mitigation alternatives investigated in this study, the use of finished compost as a blanket and finished compost as an amendment yielded the most conclusive and significant results. Both of these alternatives yielded a substantial emission reduction for terpenes, ammonia, and reduced sulfur compounds. The application of finished compost blanket resulted in up to 95% reduction of terpene and 25% reduction of ammonia emissions. Blending the feedstock with finished compost also provided substantial reduction of terpene emissions ranging from 73.6 to 93.1% at the 24% blending ratio, and up to 85% ammonia reduction a the 35% blending ratio. Use of finished compost also provided 75% lower reduced sulfur compound emissions at the 12% blending ratio. Misting and application of odor neutralizing agents did not result in any consistent reduction in emissions for any of the odorous compounds tested.

Implications The odor emissions from composting are often considered to be the biggest threat to composting facilities. Because most facilities cannot afford enclosures and contained composting vessels, there is a need to inexpensively and effectively control the odor emissions from composting facilities. The findings of this research can lead the way for efforts to control odor easily and cost effectively. In fact, the application of a compost blanket for odor control is already gaining acceptance by the composting industry.  相似文献   
20.
Abstract: Sediment oxygen demand (SOD) is believed to be an important process affecting dissolved oxygen (DO) concentrations in blackwater streams of the southeastern coastal plain. Because very few data on SOD are available, it is common for modelers to take SOD values from the literature for use with DO models. In this study, SOD was measured in seven blackwater streams of the Suwannee River Basin within the Georgia coastal plain for between August 2004 and April 2005. SOD was measured using four in situ chambers and was found to vary on average between 0.1 and 2.3 g O2/m/day across the seven study sites throughout the study period. SOD was found to vary significantly between the watersheds within the Suwannee River Basin. However, land use was not found to be the driving force behind SOD values. Statistical analyses did find significant interaction between land use and watersheds suggesting that an intrinsically different factor in each of the watersheds may be affecting SOD and the low DO concentrations. Further research is needed to identify the factors driving SOD dynamics in the blackwater streams of Georgia’s coastal plain. Results from this study will be used by the Georgia Department of Natural Resources – Environmental Protection Division as model input data for the development and evaluation of DO total maximum daily loads in the Georgia coastal plain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号